H-Bases and Interpolation

نویسندگان

  • Dana Simian
  • Corina Simian
چکیده

The article presents some results concerning H-bases and theirs applications in multivariate interpolation. We derived the space of reduced polynomials with respect to a particular inner product. We made some connections with least interpolation and presented two application of the connection between spaces of reduced polynomials modulo a H-basis and spaces of ideal interpolation. 2000 Mathematical Subject Classification: 65D05, 41A05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Bases for Polynomial-Based Spaces

Since it is well-known that the Vandermonde matrix is ill-conditioned, while the interpolation itself is not unstable in function space, this paper surveys the choices of other new bases. These bases are data-dependent and are categorized into discretely l2-orthonormal and continuously L2-orthonormal bases. The first one construct a unitary Gramian matrix in the space l2(X) while the late...

متن کامل

Gröbner Bases, H–bases and Interpolation

The paper is concerned with a construction for H–bases of polynomial ideals without relying on term orders. The main ingredient is a homogeneous reduction algorithm which orthogonalizes leading terms instead of completely canceling them. This allows for an extension of Buchberger’s algorithm to construct these H–bases algorithmically. In addition, the close connection of this approach to minima...

متن کامل

H-bases for polynomial interpolation and system solving

The H–basis concept allows similarly to the Gröbner basis concept a reformulation of nonlinear problems in terms of linear algebra. We exhibit parallels of the two concepts, show properties of H–bases, discuss their construction and uniqueness questions, and prove that n polynomials in n variables are under mild conditions already H–bases. We apply H–bases to the solving of polynomial systems b...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

Macro-element Hierarchical Riesz Bases

We show that a nested sequence of C macro-element spline spaces on quasi-uniform triangulations gives rise to hierarchical Riesz bases of Sobolev spaces H(Ω), 1 < s < r+ 3 2 , and H 0(Ω), 1 < s < σ+ 3 2 , s / ∈ Z+ 1 2 , as soon as there is a nested sequence of Lagrange interpolation sets with uniformly local and bounded basis functions, and, in case of H 0(Ω), the nodal interpolation operators ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005